
Chapter 11 
EVOLVING DOMINATION IN THE 

LABORATORY 
The spontaneous creation of hierarchies and the patterned beliefs that 

support them 
 
11.1. Prologue  
 
11.1.1 Background briefing 
 
The last paragraph of the previous chapter explains fully the motivation behind the 
experiment to which the present chapter is dedicated. Taking neoclassical economists 
on their word that they are staunch empiricists, some time in the 1990s I decided to 
design experiments which raised empirical doubts about the solidity of the 
foundations underpinning neoclassical dogma.  

In particular, I set out to design an experiment that illustrated the remarkable 
capacity of humans to create, almost from nothing, patterned behaviour that 
discriminates on the basis of arbitrary characteristics which, according to neoclassical 
theory, should make not an iota of a difference. Put differently, I endeavoured to show 
to my neoclassical colleagues that it is perfectly possible to have systematic 
behavioural patterns which constitute a vicious form of discrimination that does not, 
nonetheless, reflect anything ‘real’.  

Aware of the conservative turn amongst 1990s neoliberals, which caused them 
to think of sustained race and gender discrimination as some sort of ‘proof’ that 
women and blacks were somehow ‘challenged’ (remember the awful book entitled 
The Bell Curve?), I thought it would be interesting to see if sustained discrimination 
could evolve in a laboratory between groups that were virtually identical. The fact that 
such a result would never square with the neoclassical model of men and women 
made it an exciting proposition. 

The previous chapter presented the first such experiment, as published in a 
philosophy journal. As I explained in the last chapter’s epilogue, I then set out to 
design an even more powerful experiment that I intended to publish in a leading 
economic journal. This would also constitute an experiment: not an experiment in 
how lay people behaved in an experimental laboratory but, rather, an experiment to 
test how genuine neoclassical economists are when they claim to be empiricists who 
would never deny the facts primacy over their theoretical prejudices.  

 
11.1.2 The rest of this chapter1 
 
Many economic interactions mix mutual benefit with a measure of conflict. For instance 
when two people trade, there is often more than one price where both will benefit. The 
high end of the range favours the seller while the lower advantages the buyer. So, when 
they settle on a price and trade, they unlock a mutual benefit and resolve a potential 
conflict. The Hawk-Dove game (HD) captures these elements, albeit in a rather simple 
way as each player only has a choice between being a hard bargainer (a hawk) and a soft 
one (a dove). Nevertheless, this is why it is regarded as one of the classic games of social 
life and why it is important to be able to predict behaviour in this game.  
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 Prediction, however, is difficult in the HD game for reasons that relate to some 
fundamental issues in game theory. The game has multiple Nash equilibria and the 
equilibrium selection problem is not readily solved, if we stick with the mathematical 
description of the game, by an appeal to salience. The symmetrical solution, for instance, 
echoes the symmetry of the game, but it is not a Nash equilibrium and so does not seem 
a good candidate for salience. Likewise the two pure strategy equilibria are symmetrical 
with one another and so the appeal of one looks as strong as the other.  
 It is possible, nevertheless, that a factor that is extraneous to the mathematical 
description of the game might make one of these asymmetric equilibria salient. Indeed 
evolutionary theorists argue that extraneous factors which distinguish between the 
players and which are common knowledge can ‘seed’ conventions which advantage one 
type of player relative to another (e.g. see Sugden, 1986, and Weibull, 1995; and see 
Lewis, 1969, on conventions).  
 Others find this explanation of equilibrium selection implausible because the 
inequalities in outcome are supported only by convention and owe nothing to power, 
ability, or principles of fairness, etc. While some evolutionary theorists concede that 
principles of fairness may play a role in equilibrium selection in such games, they also 
sometimes follow Hume (1740) and argue that these ideas of fairness themselves 
develop out of the emerging conventions. Thus a convention that evolves in the play of 
HD may come to be associated with a set of self-validating normative expectations 
regarding what is fair. These ideas may then come to affect behaviour in other games 
(see Sugden, 1986, 2000). The main purpose of this chapter is to see whether these 
processes of convention and idea formation occur in simple experimental games. 
 First, the experiment tested for whether a convention emerges in the HD game 
when players are given a piece of distinguishing extraneous information. In particular, 
players were given either a red or blue identifying colour in the experiment before 
playing HD and I tested whether the subsequent behaviour was consistent with people 
following a convention founded on this initial arbitrary colour assignment. Of course, the 
distinguishing features that might be used in social life are liable to be more complex in 
origin than this. Nevertheless it is helpful to know whether conventions can arise in this 
rather simple experimental setting as it gives an insight into whether the same kind of 
mechanisms could underpin the generation of conventions in society more generally. 
 Second, the chapter investigates how ideas of fairness associated with the 
evolutionary emergence of a convention in one game might affect play in another game. 
There are two possibilities here.  The principle of fairness generated in one game can act 
as an equilibrium selection device in other games. Alternatively, these ideas of fairness 
could feed into a new equilibrium concept: that is, the players’ concern to be fair may 
support non-Nash equilibria in these games. For example, it is sometimes argued in 
behavioural economics that the selection of the co-operative strategy in the prisoners’ 
dilemma game can be explained through the introduction of ‘psychological’ pay-offs 
(see Chapter 8, Rabin, 1993, or Sugden, 2000 for a similar idea). These are pay-offs that 
are distinguished from the material ones captured in the standard game theoretic 
representation of an interaction. They arise because players hold beliefs about the 
fairness of any material outcome which affect their assessment of it.  
 If fairness does motivate in this way, then it becomes important to understand 
how people come to have ideas regarding what fairness is:  What does it consist of? Αnd 
when does it apply? The latter is important because these theories also typically generate 
multiple equilibria and so pose the same question regarding equilibrium selection. To 
throw light on this problem too, the chapter also reports on an experiment which begins 
to address such questions. 
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 In particular, the HD game is amended by adding a third co-operative strategy.2 
The amended game is labelled as the Hawk-Dove-Co-operate game (HDC). If both 
players select the ‘co-operative’ strategy in this new game, the outcome is symmetrical 
and Pareto-dominates all three of the game’s Nash equilibria.  However, the co-operative 
strategy is not part of any equilibrium according to either standard or evolutionary game 
theory and, from these perspectives, the new game is strategically the same as HD. 
Mutual co-operation is however a ‘fairness equilibrium’ in the sense that both Rabin 
(1993) and Sugden (2000) suggest. The concern here is whether (i) the mutual co-
operation outcome persists in repeated play and (ii) whether this fairness equilibrium 
was still selected if, outside the HDC game, players have experienced a convention 
which gives one of them an arbitrary advantage. The thought here is that, if Hume’s 
ideas are right, then the ideas of fairness associated with an asymmetric convention in 
the play of HD will militate against the symmetric fairness equilibrium of mutual co-
operation when HDC is played.   
 Thus the chapter makes two contributions to the conventional neoclassical 
literature: It reports on an experiment that is designed to test (a) for the emergence of a 
convention based on arbitrary colour assignments which enables equilibrium selection in 
the HD game, and (b) for the endogenous generation of normative expectations in HD 
which affect play in HDC. The former addresses a prediction in evolutionary game 
theory and the latter addresses some particular concerns in behavioural economics with 
respect to the formation and influence of ‘psychological’ pay-offs. The organisation of 
the paper is as follows. Section 11.2 sets out and considers the two games in more detail. 
Section 11.3 describes the experiment. Section 11.4 gives the results, section 11.5 offers 
an interpretation and section 11.6 concludes. 
 
9.2 The Hawk-Dove Game and an amended version 
 

 
Table 11.1 presents an HD game. There are two 
common analyses of this game when it is played 
repeatedly and anonymously: the standard (or 
conventional) approach and an evolutionary version.  
  
Standard game theory assumes fully rational agents and 

finds that HD has three Nash equilibria, two in pure strategies (h,d) and (d,h) and one in 
mixed strategies (p=1/3, where p is the probability of an ‘h’ choice). 3 The evolutionary 
approach, on the other hand, assumes non-rational players who gravitate toward the 
strategy with the highest pay-offs. In the biological interpretation of an evolutionary 
process, the gravitation occurs because high pay-offs confer reproductive success; 
whereas in the social interpretation of the process, it happens because people learn from 
the success of others. It is helpful to consider two possible types of evolution: 
 
(i) One-dimensional evolution: This applies to an homogeneous population. Since all members are 

identical in every way, the evolution of strategies is the same for all members.  
(ii) Two-dimensional evolution: All members are identical, with one small exception. Some have 

one arbitrary feature, the remainder the other. This difference, though arbitrary, endows the 
evolutionary process with a second dimension because the fact that each player possesses one of 
two distinguishing (and observable) features makes it possible for individual behaviour to be 
conditioned on one’s own feature (as well as on the feature of one’s opponent). The result is that 
the strategy which gathers popularity among members of one group may be different from that 
which is established in the other. 

The Hawk-Dove Game 
 h d 
h -2,-2 2,0 
d 0,2 1,1 
Table 11.1 
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 Under one-dimensional evolution, there is a unique evolutionary equilibrium: the 
proportion or probability (p) of players choosing ‘h’ equals 1/3. This follows because 
the average return to a person playing ‘h’ will be greater (less) than playing ‘d’ for any 
value of p<1/3 (p>1/3). Consequently more (less) players will opt for ‘h’ if p<1/3 
(p>1/3) and p will rise (fall). Therefore p will only be stable when it equals 1/3, a value 
which coincides with the Nash equilibrium in mixed strategies. 
 With two-dimensional evolution, there are two evolutionary equilibria. Suppose 
the population is divided into two equally-sized groups by an arbitrary colour 
identification: members are somehow labelled either blue or red. In meetings between 
players of different colour the two evolutionary equilibria are: ‘red plays h and blue 
plays d’ or ‘red plays d and blue plays h’ (see Weibull, 1995, and Friedman, 1996).4 The 
key to this result is that strategies can be conditioned on colour in cross-colour meetings. 
Suppose that, at the outset and for no particular reason, the frequency of ‘h’-play by blue 
people falls below 1/3 (and happens to be less than the frequency of ‘h’-play by the 
reds). Then red persons will discover that, when matched against a blue person, the 
return to ‘h’ exceeds that of ‘d’ and thus ‘h’-play among red people will increase. This 
will reinforce the relative attractiveness of ‘d’-play for blue people in cross colour 
encounters. In the end, all blue players will be playing ‘d’ and all red players ‘h’.5 
Meanwhile the unique evolutionary equilibrium for meetings between players of the 
same colour coincides with the one-dimensional equilibrium (p=1/3). 
 The evolutionary equilbria in mixed colour meetings that result in (h,d) or (d,h) 
can be interpreted as conventions (see Lewis, 1969). Indeed they constitute a form of 
discriminatory convention in the sense that they assign each person, on the basis of his or 
her colour, to either the hawkish or dove-like role6 and this results in people of one 
colour enjoying much higher pay-offs than those of the other for reasons which have 
nothing to do with superior rationality, information or contribution. 
 One objective of the experiment is to test for whether a discriminatory 
convention of this sort develops when each player is identified by an arbitrary blue or red 
colour. We call this the Discrimination Hypothesis. The null hypothesis, supported by 
standard game theory and one-dimensional evolution, is that colour labels will not 
influence behaviour. The alternative hypothesis, supported by two-dimensional 
evolution, is that players will, eventually, make use of the extraneous information of 
colour labels to build a discriminatory convention.7  
 

The second game (HDC) in the experiment is 
set out in Table 11.2. The original HD game 
has been amended by the addition of a third 
‘co-operative strategy’, ‘c’, for each player. 
This third strategy is not part of any 
equilibrium: it will not be played in a repeated 
setting according to standard game theory and 
will disappear in the evolutionary version.  

 
Nevertheless, there is some experimental evidence (see Camerer and Thaler, 1995, for a 
survey) suggesting that strategies similar to ‘c’ survive (e.g. the co-operative strategy in 
the prisoner’s dilemma). 
 One explanation of the persistence of co-operative play in interactions like HDC 
turns on the identification of ‘psychological’ pay-offs that come from the symbolic 
properties of an outcome (its ‘fairness’, ‘goodness’, etc). For example, Rabin (1993), 
whose model we studied extensively in Chapter 8, assumes agents who derive utility not 

The Hawk-Dove-Co-operate Game 
 h d c 
h -2,-2 2,0 4,-1 
d 0,2 1,1 0,0 
c -1,4 0,0 3,3 
Table 11.2 
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only from expected monetary returns but also from a perception that they acted fairly. In 
his account, the perception of fairness (and hence the psychological pay-off) depends on 
reciprocating ‘kindness’ (or ‘unkindness’). In order to make such judgements, each 
player needs to form second order beliefs regarding what his or her opponent expects 
him or her to play. So for instance, suppose Cressida is playing HDC against Troilus and 
contemplates playing ‘c’ because she predicts Troilus will also play ‘c’. Her utility pay-
off from outcome (c,c) varies depending on what she thinks about Troilus’s motivation 
for playing ‘c’. “Is Troilus about to play ‘c’ by accident? Or is he also expecting me to 
play ‘c’?”  In the latter case, Troilus’s choice of ‘c’ contains a measure of kindness to 
Cressida: given his second order beliefs that Cressida was going to play ‘c’, he could 
have collected payoff 4 (by playing ‘h’) but settled for payoff 3 and this enables Cressida 
to enjoy 3 rather than –1. In analogous manner when she plays ‘c’, expecting Troilus to 
play ‘c’, she also shows kindness to Troilus. When kindness is reciprocated in this way, 
Rabin argues that Troilus and Cressida both enjoy a  ‘psychological’ pay-off and when 
these pay-offs are suitably weighted with the material ones, it is possible for (c,c) to 
become what is  called a ‘fairness’ equilibrium.8 
 If the reader wants a refresher course on fairness equilibria, a re-read of Chapter 
8 is recommended. The point to note here is that Rabin’s theory depends on his 
definition of ‘kindness’ shown by Troilus to Cressida and vice versa. Rabin assumes that 
Troilus’s perceived kindness depends on a comparison of Cressida’s actual pay-offs 
from a strategy relative to some assumed reference point. This reference point is given 
exogenously and defines, in effect, an entitlement for Cressida.9 When Troilus enables 
Cressida to obtain something more than this entitlement, he is being ‘kind’. My 
suspicion is that when people are motivated by such ‘psychological’ pay-offs, 
perceptions of entitlement may be formed in a more complex manner than this; and this 
is why we have included this game in the experiment.  
 In particular, it seems of interest to pursue an argument from Sugden (1986) 
which suggests that ideas regarding what is ‘fair’ or ‘just’ may evolve endogenously in 
the course of social interaction. Sugden follows Hume (1740) by suggesting that, when a 
convention emerges in a game like HD, it can induce a set of supporting normative 
ideas: that is, ideas that make the arrangement seem  ‘just’ or ‘fair’ or some such. It is as 
if people find it difficult to accept that the convention is in some sense arbitrary while 
also being discriminatory.  ‘Red plays hawk and blue plays dove’ would perform just as 
well as a convention as ‘blue plays hawk and red plays dove’. But the selection of one of 
these conventions makes a big difference to who receives the most benefit and this 
seems to cause dissonance. So people remove the dissonance by finding, or inventing, 
additional principles that will justify the actual convention because it is ‘just’, ‘fair’ or 
some such. If this is the case, then it seems that play of the HD game may induce 
different ideas regarding entitlements to the play of the HDC game. This is because a 
convention in HD is inherently discriminatory while it seems from earlier experiments 
that people are attracted (possibly on grounds of fairness) to the symmetric (c,c) outcome 
in games like HDC.  
 Such a tension between discriminatory and symmetric ideas regarding what is 
‘fair’ or ‘just’ could make the play of these games sensitive to the order in which they 
are played. For example, when HDC is played first, a discriminatory convention is less 
likely to emerge than when HD is played first. This is because the symmetric ideas 
which may be encouraged by the presence of the co-operative strategies in HDC could 
inhibit the growth of the discriminatory convention in the play of HD. Likewise, the 
symmetric (c,c) outcome is less likely to occur in HDC when it has been preceded by 
HD as compared with experiments in which subjects played HDC first. This is because 
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the discriminatory ideas that might be encouraged in the play of HD could carry over to 
the play of HDC and inhibit symmetric co-operation. This is the second hypothesis of 
this chapter which I refer to as the Sequence Hypothesis.  

To be specific, the null hypothesis here is that the sequence of play of HD and 
HDC makes no difference to behaviour in either game. The alternative hypothesis is 
that a discriminatory convention is more likely to emerge when HD is played first and 
that mutual co-operation will be different when HDC is played second. This is 
supported by the idea that people are motivated by ‘psychological’ pay-offs and that 
the perceptions of entitlements which influence these pay-offs depend both on the 
presence of extraneous information and can be generated endogenously. The 
comparison with standard game theory and Rabin (1993) is instructive. Since neither 
standard game theory nor Rabin’s theory has a theory of equilibrium selection to offer 
us, neither makes a prediction regarding an order effect. So if there is an order effect, 
then neither standard game theory nor Rabin (1993) can explain it. 
 
11.3 The Experiment 
 
Four treatments were used to test the two hypotheses. The subjects played each of the 
two games (HD and HDC) 32 times under quasi-random matching in all four 
treatments. The treatments differed in two ways: in terms of (a) whether or not players 
were labelled as blue/red, and  (b) whether the 32 rounds of HD preceded, or 
followed, the 32 rounds of HDC. 

In 8 sessions no information about individual opponents was provided. We 
shall refer to them as the No-Colour treatment. In another 24 sessions, the Colour 
treatment, players were assigned a colour label at the beginning of the session and 
were informed of the colour label (blue or red) of their opponent. It is by observing 
behavioural differences between the Colour and No-Colour treatments that we test the 
Discrimination Hypothesis. 

In 16 of the 24 Colour sessions the 32 rounds of HD preceded the 32 rounds of 
HDC (the HD-HDC-Clr treatment). In the remaining 8 the order of play was reversed 
(the HDC-HD-Clr treatment). Similarly in 4 of the 8 No-Colour sessions HD 
preceded HDC (the HD-HDC-NClr treatment) while in the remaining 4 No-Colour 
sessions HDC was played first (the HDC-HD-NClr treatment). Appendix A offers 
full details. It is by observing differences in the pattern of play between the HD-
HDC-Clr and the HDC-HD-Clr treatments that we test the Sequence Hypothesis. 
 
The experimental design 
 
The 640 subjects came mostly from the student population at the University of Sydney 
over a period of 2 years. The group size in each of the sessions varied from 16 to 26 (see 
Appendix A for details). Once seated in front of their terminal, they were asked to 
consult on-screen instructions and to ask questions of clarification.  
 The instructions informed players of the following: the total number of rounds 
(64); the pay-off matrix of the first game (either HD or HDC); that the game would be 
amended after 32 rounds to another game (without telling them what the emendation 
would be) which would also be played 32 times; that at the end of the session each 
player would collect in Australian dollars the sum of her or his numerical payoffs from 
each round;10 that one player would win an additional A$10 from a lottery at the end of 
the session in which his/her chances would be proportional to how many correct 
predictions of his/her opponents’ choice he/she made; that in each round they would be 
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drawn at random against any player in the group (regardless of colour in the ‘Colour’ 
treatments) except that they would never be drawn against the same player twice in a 
row.11  
 Following a dry run of four rounds of the first game,12 the session-proper 
commenced. In the Colour treatments, the colour labels were distributed just before the 
dry run took place. (Note that the on-screen instructions made no mention of colour 
labels.) An instructor in full view of players showed them a pack of cards equal in 
number to that of players. One side of each card was white and the other was either blue 
or red (half of the cards were blue and half were red). To guarantee that the randomness 
of the colour distribution was common knowledge, the pack of cards was shuffled in 
public view. Then the instructor walked over to each subject inviting him or her to pick 
one at random (before choosing a card subjects could only see the white side of the cards 
on offer). Once they had collected their coloured card, their screen requested that they 
punch in ‘b’ if their card was blue and ‘r’ otherwise.   
 Since the games were symmetric, and in order to avoid introducing a second 
discriminant (namely, a row or column) which could have given rise to four-dimensional 
evolution, in all treatments players were told that they were choosing among the rows.13 
In each round subjects had to make two decisions. The first was to predict the strategy 
which their opponent would select in that round. The purpose of this was to gauge the 
first order (predictive) beliefs of subjects for later use (see section 5)14 and, to avoid 
unmotivated responses, subjects were offered a lottery ticket for every correct 
prediction.15 After the predictions of each player were registered, they were then invited 
to make their own strategic choice.  
 In the Colour treatments the computer informed players of the colour of their 
opponent at the beginning of each round. In the No-Colour treatments no information 
was given about one’s opponent. When all subjects had registered their predictions (of 
their current opponent’s choice) and punched in their choice of strategy, the round was 
over and their screen would provide the following information: 
 
(i) His/her opponent’s choice (and thus his/her payoff from this round) 
(ii) The group’s aggregate behaviour in both the last round and for all rounds so 

far (on average); e.g. 30% chose ‘h’, 60% chose ‘d’ and 10% ‘c’ 
(iii) The running total and the average of his/her payoffs for all rounds so far  
(iv) The average payoffs of the group for all rounds so far 
 
In Colour sessions players were given additional information on: 
 
(v) The aggregate behaviour of all red players and of all blue players separately, 

both in the last round and for all rounds so far (on average) 
(vi) The running average payoff of blue and of red players separately 
 
As is common practice in experiments of this type, the purpose of giving feedback to 
subjects in experiments is to remove sampling error and speed up convergence, thus 
avoiding the concentration lapses (not to mention spiralling costs) caused by a greater 
number of rounds. A printout of the screen offering a snapshot of what the players saw 
during the sessions can be found in Appendix A. 
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11.4 Results 
 
The theoretical predictions for the four treatments that come from standard and 
evolutionary game theory together with Rabin’s fairness equilibria are summarised in 
Table 11.3. 
 
 
The Predictions of Conventional Game Theory  
(a) Behaviour will converge on one of the three Nash equilibria available: (h,d), (d,h) or Pr(h)=1/3. 
(b) No prediction regarding order effects. 

The Predictions of Evolutionary Game Theory  
No-colour treatments Colour treatments 
(a) One dimensional evolution will lead to the 

unique evolutionary equilibrium (also a Nash 
equilibrium in mixed strategies): Pr(h)=1/3 

(b) The third strategy ‘c’ will fade away in game 
HDC 

(c) No prediction regarding order effects 

(a) Different colour meetings: Two dimensional 
evolution leading to a unique evolutionary 
(pure strategy) equilibrium in which players 
holding one of the two colours play ‘h’ and 
holders of the other colour play ‘d’ 

(b) Same colour meetings: One dimensional 
evolution leading to the unique evolutionary 
equilibrium (also the Nash equilibrium in 
mixed strategies): Pr(h)=1/3 

(c) Strategy  ‘c’ will fade away in game HDC 
(d) No prediction regarding order effects 

The Predictions of Rabin’s Model of Fairness16 
(a) All cells on the diagonal of the payoff matrices of games HD and HDC may be observed systematically, 

in addition to the pure strategy Nash equilibria (h,d) and (d,h)  
(b) Outcome (h,h) will occur more frequently in HD than in HDC (or, at least, not less frequently) 
(c) Outcome (d,d) will occur more frequently in HDC than in HD (or, at least, not less frequently) 
(d) The pure strategy Nash equilibria (h,d)and (d,h) will occur more frequently in HD than in HDC (or, at 

least, not less frequently) 
(e) The use of strategy ‘c’ in game HDC will not fade away  
(f) No prediction regarding order effects 

Table 11.3: Predictions of long run, or equilibrium, behaviour 
 
 

Game HD HDC 
Outcomes (h,h) (h,d)17 (d,d) (h,h) (h,d) (d,d) (c,c) (h,c) (d,c) 
Treatment          
HD-HDC-NClr 29 39.8 31.2 36.7 9.8 3.7 6 30.2 13.6 
HDC-HD-NClr 33 35.6 31.4 29.3 4.3 2 8.2 38.1 18.1 
HD-HDC-Clr 21.4 51.8 26.8 19.2 38.7 2.2 9.3 20 10.6 
HDC-HD-Clr 26.9 45.2 27.9 30.1 7.1 2.1 7.2 34.7 18.8 

Table 11.4: Frequency (%) of outcomes in all 32 rounds of each game per treatment 
 
 

Game HD HDC 
Strategies ‘h’ ‘d’ ‘h’ ‘d’ ‘c’ 
Treatment      
HD-HDC-NClr 48.9 51.1 56.7 15.4 27.9 
HDC-HD-NClr 50.8 49.2 50.5 13.2 36.3 
HD-HDC-Clr 47.3 52.7 48.5 26.9 24.7 
HDC-HD-Clr 48.5 51.5 51 15.1 34 

Table 5: Frequency (%) of strategies in all 32rounds of each game per treatment 
 
  



 8 

Tables 11.4 and 11.5 offer an overview of the experimental data. The data is 
expressed in percentages rounded-off to one decimal point. The data for the game that 
appear in bolded figures signify that the relevant observation in treatment HD-HDC-
Colour is different from those in the same column (i.e. of the other treatments) at the 
95% confidence level.18 The data here come from both the early, more ‘noisy’ rounds 
as well as the later ones (to which the predictions in Table 11.3 apply more readily). 
Nevertheless there are three important results.  
 
Result 1: Treatment HD-HDC-Colour stands out in terms of the frequency of the 
pure strategy Nash equilibrium (h,d). In both games (HD and HDC) the frequency of 
the pure strategy Nash equilibrium (h,d) is significantly larger in this treatment than in 
the rest. In game HDC this difference becomes overwhelming.19  
 
Result 2: Behaviour in treatment HDC-HD-Colour is significantly distinct from that 
in HD-HDC-Colour, and rather similar to that in the No-Colour treatments. In 
particular, the frequency of outcome (h,d) in HDC-HD-Colour is statistically 
indistinguishable from the two No-Colour treatments (and, of course, significantly 
lower than in HD-HDC-Colour).  
 
Result 3: Co-operative behaviour is present in the HDC game in all treatments. 
  
Result 1 is directly relevant to the Discrimination Hypothesis and is consistent with 
the two-dimensional evolutionary model.20 This finding is reinforced by the data in 
Table 11.4 showing that the more frequent occurrence of (h,d) in HD-HDC-Colour 
was achieved, especially in HDC, in spite of the fact that players did not play, in 
aggregate, ‘h’ or ‘d’ with frequencies significantly different to those in other 
treatments (see Table 11.5). It seems, therefore, that there was something in HD-
HDC-Colour that enabled players to co-ordinate their ‘h’ and ‘d’ choices so as to 
boost the incidence of outcome (h,d) at the expense of (h,h) or (d,d). (Whether this 
something was, in fact, the colour labels is the subject of our convergence analysis 
below.) 

By contrast Result 2 goes beyond the two-dimensional evolutionary model as 
it points to a clear order effect. Neither standard nor evolutionary theory can explain 
why the availability of strategy ‘c’ from the outset seems to prevent the evolution of 
discrimination. Some emendation like our Sequence Hypothesis seems necessary.21 

Likewise Result 3 is not predicted as an equilibrium outcome by standard or 
evolutionary game theory, but some care is required here as the play of ‘c’ could 
result from errors or in the process of learning adaptively. The result is, however, 
consistent with Rabin’s (1993) hypothesis (see Table 11.3). These options are 
consiered in more detail in the next section.  

To examine whether a discriminatory convention lies indeed behind the 
greater incidence of (h,d) in the HD-HDC-Colour treatment we use a version of 
Friedman’s (1996) test for convergence. In each session I computed (separately for 
HD and HDC) the frequency p that, in cross-colour meetings, blue plays ‘h’ and the 
frequency q that red plays ‘h’ based on the last 5 rounds. If the null hypothesis that 
p=q can be rejected, I proceed backwards to identify the round by which the 
discriminatory pattern observed in the last 5 rounds had settled down. Full details are 
given in Appendix B, but the idea is to look for the largest number of rounds before 
the end which would give estimates of p and q which do not differ, (at a 95 % 
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confidence level) from those values in the last 5 rounds. When p>q, then we say blue 
is advantaged (A) and red is disadvantaged (D) and vice versa. 

The table in Appendix B gives the results for whether convergence occurred in 
each of the sessions, which colour was advantaged by it, and by which round 
convergence was achieved (if it was). In 15 of the 16 sessions of treatment HD-HDC-
Clr convergence occurred within, on average, 15.9 (out of 32) rounds of HD. By 
contrast, only one of the 8 sessions in the HDC-HD-Clr treatment showed 
convergence in the first part, the HDC game. Hence, there is evidence from the study 
of convergence which points to the emergence of a discriminatory convention in HD-
HDC-Clr treatment; and there is evidence that availability of ‘c’ from the outset 
prevented the evolution of a similar pattern in HDC in 7 out of the 8 HDC-HD-Clr 
sessions. In short, the sequence of play does appear to matter. 
 

Table 11.6: Testing the hypotheses on aggregate data23 
 
Table 11.6 summarises this evidence on the two hypotheses from data based on 
observations from all 32 rounds of each game. It shows: 
 
(a) that the null hypothesis based on standard game theory (i.e. that behaviour in HD-

HDC-Clr is indistinguishable from HD-HDC-NClr) is rejected.  
(b) that the null hypothesis (i.e. that the sequence of play of HD and HDC makes no 

difference to behaviour in either game) is also rejected. 
  
Instead, there is evidence that is consistent with the emergence of a discriminatory 
convention based on colour identification in the colour treatment and evidence that 
the presence of ‘c’ at the outset inhibits the emergence of a discriminatory convention. 

In what follows, I focus on the 16 sessions where we have evidence that a 
discriminatory convention emerged well before the half point of the session (and 
regardless of which game was played first). Of these 16, 15 were sessions of the HD-
HDC-Clr treatment and only one of the HDC-HD-Clr treatment (see Appendix B for 
details). Table 11.7 compiles data from these 16 sessions from the last 11 rounds of 
HDC only; that is, the reported frequency of outcomes emerged well after the 
convention had begun to take hold. Since the discriminatory conventions were well 
established by the time the Table 11.7 dataset was compiled, we could identify 
whether each player was either advantaged (A) or disadvantaged (D) by the 
convention and so we plot the frequency of outcomes depending on whether the 

 
 

Null hypothesis; 
Alternative hypothesis in brackets 

 
Sample sizes 

p-values 

HD HDC 

 
 
 
Discriminatio
n Hypothesis22 

In HD-HDC-Clr,  
Freq of ‘h’ by blue players = (≠) Freq 
of ‘h’ by red players  
 
Freq of ‘h’ in HD-HDC-Clr 
=(≠) Freq of ‘h’ in HD-HDC-NClr  

10560 choices by blue and 
10560 by red players 
 
 
10560 choices in HD-
HDC-Clr and 2816 in HD-
HDC-NClr  

 
0.04* 
 
 
 
0.02** 

 
  0.008* 
 
 
 
0.009** 

 
Sequence 
Hypothesis 

The proportion of sessions in which 
Discrimination evolved is (is not) 
identical across HD-HDC-Clr and 
HDC-HD-Clr 

16 sessions of HD-HDC-
Clr and 8 of HDC-HD-No 
Clr; discrimination was 
observed in 15 of the 
former and 1 of the latter 

 
0.002** 
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meeting is between mutually advantaged (A) or disadvantaged (D) players or between 
an advantaged (A) and a disadvantaged (D) player. 
 
Mean outcome frequencies in the last 11 rounds of HDC in 
the 16 Colour sessions in which players of one colour (A) 
gained an advantage at the expense of players of the other 
colour (D) 

 
(h,h) 

 
(h,d) 

 
(d,d) 

 
(c,c) 

Meetings between two A players 51.2% 8.9% 1.81% 4% 
Meetings between two D players 2.1% 3.5% 0.5% 89.9% 
Meetings between an A and a D player 8.2% 81% 0.4% 0.5% 
Comparable frequencies in the 8 Colour sessions in which no 
discriminatory convention was established 

22.1% 5.6% 3.1% 8.2% 

Table 11.7: Data from the last 11 rounds of game HDC 
[Nb. Bolded frequencies exceed the other frequencies in the same column with at least 99% 
probability] 
 
Table 11.7 reveals again the influence of convention. In colour sessions in which a 
convention did not become established24 (see last row of Table 11.7), the pure 
strategy Nash equilibrium (h,d) occurs only 5.6% of the time. In sharp contrast, in the 
sessions where a convention did emerge, we find that when A-players met D-players 
the pure Nash equilibrium of (h,d) is achieved with a very high frequency (81%).  

Table 11.7 also reveals another interesting difference. We find that in those 
sessions where the discriminatory convention emerged, there is a conspicuously high 
incidence (almost 90%) of the co-operative (c,c) outcome between D-players. In 
comparison, there is mutual co-operation between A-players only 4% of the time and 
there is a negligible amount of co-operation between A and D-players. Likewise, 
when no convention emerges the level of mutual co-operation is strikingly lower at 
8.2%.25 In other words, it seems that the part of the Sequence Hypothesis relating to 
co-operation receives support from the data in the sense that when a discriminatory 
convention emerges, it is associated with very high levels of co-operation between the 
D-players. The next section focuses on this result. 
 
 Game HD Game HDC 

A-players D-players A-players D-players 
Meetings between an A 
and a D player 

66.3 21.7 137.8 39.7 

Meetings between two 
A players 

7.3 - 16.2 - 

Meetings between two 
D players 

- 19.6 - 101.3 

Average 36.8 20.7 77 70.5 
Table 11.8: Average payoffs per round (in Australian cents) of A-players and D-players in all 32 
rounds of HD and HDC in treatment HD-HDC-Colour 
 
The combined influence of the discriminatory convention and this sequence effect can 
be seen from another angle in Table 11.8. This gives an analysis of the distribution of 
average pay-offs. It shows that, over all rounds of treatment HD-HDC-Clr, A-players 
received 90% of their money from meetings with D-players. On the other hand, 
71.8% of D-players’ winnings came out of meetings with other D-players. Put 
differently, whereas only 5.8% of A-players’ earnings were due to co-operation with 
other A-players, D-players received 61.7% of their total pay-out from co-operating 
with one another. 
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11.5 Why Did Co-operation Occur Among the ‘Disadvantaged’?  
 
From the perspective of standard game theory, there seem to be two possible ways of 
explaining the high incidence of co-operation among D-players. One is to appeal to 
the heightened kind of rationality which can sustain co-operation among a sub-group 
by some version of punishment (or trigger) strategies. The difficulty with this 
interpretation is twofold. First, there remains a question regarding why it is only the 
sub-group of D-players who manage to achieve co-operation in this way. Secondly, 
under any version of a punishment (or trigger strategy) when the game has a finite 
horizon, players should abandon co-operation in the last round of the HDC game. 
However, the null hypothesis that the frequency of ‘c’ play by D-players in the last 
round remains the same as that in the previous 31 rounds cannot be rejected at the 5% 
level in favour of the alternative hypothesis that it fell (in fact it rose slightly).  

The other is to appeal to some kind of bounded or adapted rationality. Suppose 
for instance, there is inertia with respect to strategy selection such that once an A-
player learns to play ‘h’ and the D-player learns to play ‘d’ in cross-colour 
encounters, they unthinkingly do the same in same-colour matches. This would 
explain the high incidence of (h,h) among A-players but it would not explain why 
(c,c) results among D-players. Perhaps the D-players block the ‘h’ strategy in mutual 
encounters (since they don’t use it) so that they see a 2x2 version of the HDC which is 
a pure co-ordination game (see Bacharach, 1997, for a variable frame model of co-
operation). In this co-ordination game, (c,c) could become focal on the basis of Pareto 
and risk dominance and, once established, it just becomes the habit of D-players to 
play ‘c’ with each other. The difficulty with this type of argument is that it presumes 
‘adaptive’ players unthinkingly use particular strategies once they have been assigned 
to either the ‘advantaged’ or ‘disadvantaged’ role and the data casts some doubt on 
this. 26 

Table 11.9 is drawn from the last one-third run (11 rounds) of treatment HD-
HDC-Clr and gives the prediction-choice combination for both A-players and D-
players. The first row reports that D-players predicted their opponent would choose 
‘c’ 879 times. In 861 out of those cases, they chose ‘c’ themselves. A-players 
predicted ‘c’ 789 times, but only responded with ‘c’ in 31 cases (see row 3). In 
meetings with opponents bearing the same colour label as themselves, D-players co-
operated almost every time they had predicted ‘c’  (i.e. with frequency 98.7%, see row 
5). When they had not predicted ‘c’ by a fellow D-player, they played ‘c’ 43.3% of 
the time (row 6). The latter is a high figure which provides some succour for the habit 
hypothesis, but since it is under half the figure for when they expected their fellow D-
player to choose ‘c’, it seems that something more than a thoughtless attraction to ‘c’ 
explains behaviour here. Likewise although A-players in their mutual meetings are 
not attracted very often to play ‘c’, its frequency  is higher when an A-player expects 
the other A-player to choose ‘c’ (24.7%, see row 7) compared with when they do not 
expect ‘c’ (9%, see row 8). 
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 Player’s 
colour 

Opponent’s 
colour 

Player predicted 
opponent would  
play strategy: 

 
AND then played 
strategy: 

Conditional 
Freq 
(*) 

 
 
% 

p-values  
< 0.001                                     
(**) 

1 D Any c c 861/879 98  
2 D Any ~c c 31/789 3.9  
3 A Any c c 59/1174 5  
4 A Any ~c c 82/2603 3.2  
5 D D c c 830/841 98.7  
6 D D ~c c 29/67 43.3  
7 A A c c 20/81 24.7  
8 A A ~c c 74/826 9  
9 D A c c 31/38 81.6  
10 A D c c 39/1093 3.6  
11 D A ~c c 2/722 0.2  
12 A D ~c c 8/1777 0.5  
13 D D h h 53/67 79  
14 A A h h 602/826 72.9  
15 A D h h 23/140 16.4  
16 D A h h 28/1762 1.6  
 
Table 11.9: The Prediction-Choice Combinations of subjects in the last one-third-run (11rounds) 
of HDC in treatment HD-HDC-Colour 
(*) This column refers to the frequency of particular combinations of expectations and choices. For 
example, the first row reports that, in the last 11 rounds of HDC, there were 879 occasions when D-
players predicted that their opponent would play ‘c’. Of those 879 instances, D-players decided to 
respond to that prediction by playing ‘c’ 861 times. The sixth row reports that there were 67 occasions 
when, in a meeting between two D-players, a D-player did not predict ‘c’ but played ‘c’ regardless 29 
(out of those 67) times. 
(**) The p-values indicated here by the arrows relate to the null that the two frequencies linked by the 
arrows are equal. 
 
Likewise, rows 9 to 12 caution against this adaptive explanation. D-players seem to 
have thought quite carefully before attempting to co-operate. When they played 
against A-players whom they thought would not co-operate, they only chose ‘c’ in 2 
out of 722 cases (row 11); whereas, when they expected that the A-player would 
choose ‘c’, they co-operated in 31 out of 38 cases (row 9). Again this hardly accords 
with the view that D-players were thoughtlessly locked into playing ‘c’. Turning to A-
players, their propensity to co-operate with a D-player was also influenced distinctly 
by whether they expected ‘c’ or not (rows 10 and 12). 

Since standard game theory does not seem able to provide convincing 
explanations of the persistence of co-operation (especially among D-players), we now 
turn to explanations which postulate psychological pay-offs. The earlier discussion 
(section 11.2) indicated how the Rabin model can explain co-operative behaviour in 
HDC and the conflict outcome (h,h). Its drawback is that it cannot account for 
differences in the frequency of co-operative moves between our A-players and D-
players. To make this possible, we would have to amend Rabin’s model so as to 
explain why (c,c) is selected as a fairness equilibrium among D-players but not among 
A-players.  

One way of achieving this would be to assume that while playing HDC in 
treatment HD-HDC-Clr, agents’ normative beliefs on entitlement reflect not just the 
structure of the pay-off matrix (as Rabin, 1993, assumes) but, additionally, their role 
in the discriminatory convention which emerged in the earlier play of the HD game. 
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So, A-players might have higher normative expectations regarding entitlements than 
D-players following the play of HD (see the average pay-offs for the HD part of the 
game reported in Table 11.8). If this was the case, then (c,c) could be a ‘fairness’ 
equilibrium for D-players but not for A-players. Instead A-players with higher 
normative expectations may find themselves locked into a nasty (unkind) fairness 
equilibrium with players of the same colour. In such an equilibrium they anticipate 
that their A-opponents are about to harm them by playing ‘h’ and, in order to avoid 
the unfairness of repaying nastiness with kindness (or even with normatively neutral 
behaviour), they respond to a probable ‘h’ with an ‘h’. 

As suggested earlier, this kind of endogenous generation of entitlements 
follows a line of argument in Sugden (1986). It is not implausible given what is 
known from other experiments (see Babcock et al, 1995, Asdigan et al, 1994, Schotter 
et al, 1996, and Binmore and Samuelson, 1993)27 and it is a natural extension in some 
respects of what evolutionary theory suggests regarding the evolution of positive (i.e. 
predictive) beliefs into normative beliefs concerning entitlements. Our evidence 
seems to be adding to this line of thinking.28  

Nevertheless, the argument is, at best, suggestive. There are tricky issues of 
detail concerning precisely how entitlement norms evolve which need to be 
addressed. Furthermore, an appeal to the motivational force of an evolving set of 
psychological pay-offs is not the only possible way to account for co-operative 
behaviour among the D-players. For instance, it might be possible to argue that D-
players ‘group identify’ and so adopt a form of team reasoning which produces co-
operation (see Bacharach, 1999 who might explain this as a result of the ‘common 
fate’ hypothesis of group identity formation). The point of the argument in this 
section, then, is simply to lay the ground for a more thorough investigation along 
these lines because it seems that standard game theory cannot explain the co-operative 
behaviour among D-players while some kind of evolving fairness equilibrium or 
evolving group identification process could. 
 
11.6 Chapter’s Epilogue 
 
This chapter reported on an experiment with two striking patterns of behaviour: the 
quick emergence of a relation of dominance in a repeated Hawk-Dove game 
associated with purely conventional labels; and a tendency for the subjects with 
subservient labels to co-operate with each other.  

The first of these bears out the predictions of evolutionary game theory. The 
second cannot be explained by either standard or evolutionary game theory or Rabin’s 
psychological theory. One possible explanation, however, comes from an amended 
version of Rabin’s (1993) model: If the convention of dominance establishes a norm 
of different entitlements for those with different labels, then this norm could define a 
‘fairness’ equilibrium among those with a subservient label which involves mutual 
co-operation. With this interpretation of the matter, the experimental data not only 
supports the hypothesis that ‘psychological pay-offs’ matters but also that they are 
affected by the presence of a discriminatory convention. This is an important result, 
not least because it throws new light on the Athenian generals’ argument, as well as 
Aristotle’s famous maxim about the weak resorting to moral behaviour, with which I 
began the previous chapter.  
 
VERDICT: The experiment presented here points unambiguously to two empirical 
findings on note: First, that discrimination based on utterly arbitrary charactristics 
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evolves quickly and systematically in the experimental laboratory. Secondly, that 
game theory (of both the standard or evolutionary variety) cannot explain this.  

Utilising standard tools invented by neoclassical economists and adopting 
experimental methods of the highest standards that neoclassicists deman, we showed 
that people behave in a manner that neoclassical economists cannot explain. 
Moreover, we showed that these ‘unexplained’ behavioural patterns are highly 
signficant as they hold the key to biases that we observe daily in the our societies 
distribute income, wealth, privileges, as well as a variety of social roles.  

We also showed that these results, while unfathomable by the neoclassical 
mindset, have perfectly good explanations if one is prepared to look beyond 
neoclassicism.  

Finally, the said experiment was published in The Economic Journal after 
having passed all the refereeing tests, checks and balances that are part and parcel of 
neoclassical economics’ strictures.  
 “And to what effect?” one might ask? What was the response of the 
neoclassical profession? Did any of its proponents feel the need to offer a rejoinder? 
To question our method? To carry out some other experiment whose results might 
cast doubt on our claims? No dear reader. Silence. The paper might as well have 
never been published.29 Only in economics is it possible that a powerful discipline’s 
basic tenets are disputed in one of its prestigious, mainstream, journals but the 
‘profession’ proceeds as if nothing has happened. No further evidence is needed that 
neoclassical economics is a kind of theocracy hiding behind equations and statistical 
methods but bent on remaining unperturbed by scientific inquiry and inconvenient 
facts. 
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 Appendix A: The 32 sessions of the 4 treatments 
 

In each treatment subjects played the 1st game 32 times and then played the 2nd game 
another 32 times. Below the sessions are listed in chronological order. Column N 
denotes the number of subjects in each session. 
 

 Treatment N  Treatment N  Treatment N 
1 HD-HDC-NClr 24 12 HD-HDC-Clr 18 23 HD-HDC-Clr 18 
2 HDC-HD-NClr 16 13 HDC-HD-Clr 18 24 HD-HDC-Clr 16 
3 HDC-HD-NClr 22 14 HDC-HD-Clr 20 25 HD-HDC-Clr 22 
4 HDC-HD-NClr 22 15 HD-HDC-Clr 18 26 HDC-HD-Clr 18 
5 HD-HDC-NClr 18 16 HD-HDC-Clr 16 27 HD-HDC-Clr 22 
6 HD-HDC-NClr 24 17 HDC-HD-Clr 20 28 HD-HDC-Clr 16 
7 HD-HDC-NClr 22 18 HDC-HD-Clr 24 29 HD-HDC-Clr 26 
8 HDC-HD-NClr 16 19 HD-HDC-Clr 24 30 HD-HDC-Clr 18 
9 HDC-HD-Clr 18 20 HD-HDC-Clr 16 31 HD-HDC-Clr 22 
10 HD-HDC-Clr 16 21 HD-HDC-Clr 20 32 HD-HDC-Clr 26 
11 HD-HDC-Clr 26 22 HD-HDC-Clr 16    

 
Treatment No. of sessions No. of players Interactions per game 
HD-HDC-NClr 4 88 1408 
HDC-HD-NClr 4 76 1216 
HD-HDC-Clr 16 330 5280 
HDC-HD-Clr 8 146 2336 
Total 32 640 10240 

 
  
 
 

 
Treatment 

1st Game (32 rounds) 2nd Game (32 rounds) Colour labels assigned? 

HD-HDC-NClr HD HDC No 
HDC-HD-NClr HDC HD No 
HD-HDC-Clr HD HDC Yes 
HDC-HD-Clr HDC HD Yes 

   Abbreviations of the four treatments 
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Example of the screen subjects faced in the fourth round of HD-HDC-Colour 
 

 

  The Game - Round 4 of 32   Information 
 
FOR THIS ROUND YOU HAVE BEEN    Frequency of   Strategies 
MATCHED (RANDOMLY) WITH A RED PLAYER previous choices    1   2 
       By the whole group 34% 66% 
       (including yourself) 
       in the LAST round 
       By the whole group 39% 61% 
       (including yourself) 
       in ALL 3 previous  rounds 
       By the blue players 43% 57% 
       (including yourself) 
       in the LAST round 
       By the blue players 40% 60% 
       (including yourself) 
       in ALL 3 previous rounds 
       By the red players 25% 75% 
       in the LAST round 
       By the red players 38% 62% 
       in ALL 3 previous rounds 
 
PLEASE: Predict the choice that the player you have just been randomly matched with will make in 
this round. [Recall that if you predict correctly, you will win, in addition to your money payoffs from this 
round, a lottery ticket. At the end of the session, $10 will be given to the player with the lucky ticket. The 
more lottery tickets you collect the greater the chances of winning the $10.] 
Punch in number 1 if you think that she/he will choose strategy 1, or 2 if you think that she will 
choose strategy 2. 
 
/Note to the reader: Once  the player made his/her prediction, the above paragraph disappeared from the 
screen and the following emerged/ 
 
NOW CHOOSE YOUR OWN STRATEGY: Punch in number 1 if you wish to select strategy 1, or 2 if 
you prefer strategy 2. 

  THE OTHER PLAYER  
 
        1     2 
 1 -$2,-$2  $2,0 
 
YOU 
 
 2    0,$2  $1,$1 
 
Your payoffs so far:   $3 
Your average payoffs so far:  $1 



 17 

Appendix B: The emergence of ‘advantaged’ and ‘disadvantaged’ colours in the 
colour treatments (Sessions 9 to 32) 
 
(1) Description of the algorithm used to establish whether (and if so in which round) 

discrimination emerged 
 
Let p = Freq(Blue→h) and q = Freq(Red→h) denote the frequency of event “Blue  (or 
Red) player chose h in some round of a game”. 
 
STEP 1: In each session compute (separately for HD and HDC) p and q from the last 
5 rounds of the game. If p>q, set A=Blue and D=Red or vice versa. Let π = 
Freq(A→h) and  θ = Freq(D→h). If the null that π= θ can be rejected with 95% 
confidence (in favour of the alternative hypothesis that π>θ), then STOP. (For if it 
cannot be rejected, then no convergence was achieved by the end of the game’s 32 
rounds.) If it can, proceed to STEP 2 in order to identify the round by which the 
discriminatory pattern which was observed over the last 5 rounds had settled down. 
 
STEP 2: Following Friedman (1996), the following convergence criterion was used: 
1
L

SupNorm
t R

{ ' , ' }π π ϑ ϑ ε− − ≤
∈
∑  where L is the length of run R under scrutiny. 

Values π  and θ, as before, were computed over the last five rounds of the game in 
question. Values πʹ′ and θʹ′ were computed over the run of length L. At first we set 
L=6 and chose as our 6 observations the last 6 rounds of the game. Thus run R 
initially included the last 6 rounds of each game in each session. If the criterion was 
met for the chosen value of ε (see below for an explanation of how ε was chosen), L 
was set equal to 7 (i.e. R became the last 7 rounds of the game) and the criterion was 
computed again. This process ended at L=λ-1 when the criterion was, for the first 
time, not met (given the same value of ε). At that point the algorithm came to an halt 
and convergence to a stable pattern of discrimination was pronounced to have 
occurred on round 32-λ. 
 
The meaning of the above criterion is that the larger absolute deviation between (a) 
the empirical probabilities over the run’s L rounds that A-players and D-players will 
play strategy h, and (b) the same empirical probabilities as observed in the last 5 
rounds, the smaller the chances that the pattern of discrimination which we observe in 
the last 5 rounds had ‘settled down’ L rounds before the game’s end. Thus the 
criterion checks that the larger absolute deviation between (a) and (b) must not 
exceed a certain threshold ε.  
 
Finally, the value of ε was selected in such a manner that if the convergence criterion 
were to hold then we could be certain with 95% confidence that, in the last L rounds 
of the game, πʹ′ and θʹ′ had converged to their values in the last 5 rounds. The table 
below, based on the above algorithm, reports on whether convergence was achieved 
and if so during which round: 
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(2) Convergence table 
 

Session no. and 
colour treatment 

 
Game HD 

 
Game HDC 

 
 

 
 

Convergence? Which 
Colour? 

Which 
Round? 

Convergence? Which 
colour? 

Which 
Round? 

9 HDC-HD Yes Red 26 No - - 
10 HD-HDC Yes Red 24 Yes Red 12 
11 HD-HDC Yes Blue 19 Yes Blue 8 
12 HD-HDC Yes Blue 18 Yes Blue 5 

13 HDC-HD Yes Blue 1 Yes Blue 26 
14 HDC-HD Yes Red 24 No - - 
15 HD-HDC Yes Red 21 Yes Red 11 
16 HD-HDC Yes Blue 20 Yes Blue 2 
17 HDC-HD Yes Red 23 No - - 
18 HDC-HD No - - No - - 
19 HD-HDC Yes Blue 15 Yes Blue 8 
20 HD-HDC Yes Blue 20 Yes Blue 6 
21 HDC-HD No - - No - - 
22 HD-HDC Yes Red 14 Yes Red 13 
23 HD-HDC Yes Blue 16 Yes Blue 1 
24 HD-HDC Yes Red  Yes Red 2 
25 HD-HDC Yes Blue 10 Yes Blue 20 
26 HDC-HD No - - No - - 
27 HD-HDC Yes Red 20 Yes Red 21 
28 HD-HDC Yes Red 7 Yes Red 6 
29 HDC-HD No - - No - - 
30 HD-HDC Yes Blue 18 Yes Blue 7 
31 HD-HDC No - - No - - 
32 HD-HDC Yes Blue 16 Yes Blue 10 
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Appendix C: Disaggregated data from all 32 rounds of treatment HD-HDC-Clr  
 

In this appendix we present the data for all 32 rounds of each game in HD-HDC-Clr 
corresponding to Table 11.7 (in which only data from the last 11 rounds of HDC was 
reported). Bolded figures signify that the relevant observation was different from 
those in the same column at the 99% confidence level. Note that only data from 15 
out of the 16 sessions of HD-HDC-Clr were used (since in session 31 - see Appendix 
B - no colour emerged as ‘advantaged’). 
 
 Outcomes Strategies 

(h,h) (h,d) (d,d) ‘h’ ‘d’ 
Meetings between two A players 30.9 44.2 24.9 53 47 
Meetings between two D players 26.8 43.2 30 48.4 51.6 
Meetings between an A and a D player 14 59.9 26.1 44 56 
Data from all 32 rounds of HD in the 15 HD-HDC-Clr sessions in which A and D 
colours emerged 
 
 
 Outcomes Strategies 

(h,h) (h,d) (d,d) (c,c) (h,c) (d,c) ‘h’ ‘d’ ‘c’ 
Meetings between two A players 42.8 17.2 3 3 24.2 9.8 63.5 16.5 20 
Meetings between two D players 17.7 12.8 6 29 10.3 24.3 29.2 24.5 46.3 
Meetings between an A and a D player 8.2 62.3 0 2.6 22.7 4.2 50.7 37.3 16.1 
Data from all 32 rounds of HDC in the same 15 HD-HDC-Clr sessions as above 
 
The next table presents a further breakdown of the above data as it pertains to 
meetings between an A and a D player. Note that the data refers to game HDC (with 
the corresponding data from game HD in brackets). E.g. in HDC there were no 
occurrences of (d,d) when an A-player met a D-player whereas that outcome occurred 
26.1% of the time when an A-player met a D-player in game HD. 

 

 
 
 
 
A-
player 

 D-player 
 ‘h’ ‘d’ ‘c’ Sub-total 
‘h’ 8.2 (14) 62.3 (48.1) 8.5 79 (62.1)  
‘d’ 0 (11.8) 0 (26.1) 1.2 1.2 (37.9) 
‘c’ 14.2 3 2.6 19.8 
Sub-
total 

22.4 (25.8) 65.3 (74.2)  12.3 100 

Aggregate behaviour in HDC (HD data in brackets) when an A-
player met a D-player in HD-HDC-Clr 
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Appendix D: Disaggregated data from all 32 rounds of treatment HDC-HD-Clr  
 

This appendix offers three tables equivalent to those of Appendix C only this time for 
treatment HDC-HD-Clr. Bolded figures again signify that the relevant observation 
was different from those in the same column at the 99% confidence level. As in 
Appendix C note that only data from the sessions of HDC-HD-Clr in which 
discrimination on the basis of colour emerged were used. That is, the data below 
refers to only 4 out of the 8 sessions of treatment HDC-HD-Clr for game HD and 
only 1 session for game HDC (see Appendix B). 
 
 
 
 Outcomes Strategies 

(h,h) (h,d) (d,d) ‘h’ ‘d’ 
Meetings between two A players 31.7 39.9 28.4 51.6 48.4 
Meetings between two D players 31.9 36.1 32 49.9 50.1 
Meetings between an A and a D player 21.8 52.4 25.8 48 52 
Data from all 32 rounds of HD in the 4 HDC-HD-Clr sessions in which A and D 
colours emerged 
 
 Outcomes Strategies 

(h,h) (h,d) (d,d) (c,c) (h,c) (d,c) ‘h’ ‘d’ ‘c’ 
Meetings between two A players 32.5 8.9 0.4 7 35.3 15.9 54.6 12.8 32.6 
Meetings between two D players 32.4 7.2 4.3 10.1 30 16 51 15.9 33.1 
Meetings between an A and a D player 27.8 6.2 1.8 5.8 36.8 21.6 49.3 15.7 35 
Data from all 32 rounds of HDC in the single HDC-HD-Clr session where 
discrimination surfaced 

 

 
 
 
 
A-
player 

 D-player 
 ‘h’ ‘d’ ‘c’ Sub-total 
‘h’ 27.8 (21.8) 3 (31.9) 17 47.8 (53.7) 
‘d’ 3.2 (20.5)  1.8 (25.8)  11.5 16.5 (46.3) 
‘c’ 19.8 10.1 5.8 35.7 
Sub-
total 

50.8 (42.3) 14.9 (57.7) 34.3 100 

Aggregate behaviour in HDC (HD data in brackets) when an A-
player met a D-player in HDC-HD-Clr 
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Appendix E: Payoffs 
(1) Overall average payoffs per player per round:  
 

  
HD-HDC-NClr 

 
HDC-HD-NClr 

 
HD-HDC-Clr 

 
HDC-HD-Clr 

HD 13c 1c 35.8c 19.3c 
HDC 48.7c 29.5c 93.3c 74.7c 

 
(2) Payoffs per player per round in colour sessions where discrimination evolved  
 

Treatment HD-HDC-Clr HDC-HD-NClr 
 
Pairing 

Game A’s payoff D’s payoff A’s payoff D’s payoff 

 Meetings between 
an A and a D player 

HD 88.3c 15.7c 48.6c 69.2c 
HDC $1.36 39.7c $1.93 $1.36 

Meetings between 
two A players 

HD 7.3c - $1.18 - 
HDC 16.2c - $2.43 - 

Meetings between 
two D players 

HD - 19.6c - $1.3 
HDC - $1.01 - $2.45 

Mean per 
game 

HD 47.8c 17.7c 83.1c $1 
HDC 75.9c 70.5c $2.18 $1.91 

Overall Average 61.9c 44.1c $1.51 $1.45 
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NOTES 
                                                
1 This chapter reproduces, to a large extent, Hargreaves-Heap and Varoufakis (2002). 
2 Note that this third strategy was never related to subjects as ‘co-operative’. Strategies were only referred 
to by their number.  
3 Since individual behaviour is unobservable, and there is no room for trigger strategies to develop due to 
replacement of one’s opponents after each round, players cannot invest in some reputation. Thus, each 
round resembles a one shot game. 
4 Our choice of colours is not random. Mehta et al (1994) report on a laboratory experiment of the ‘name 
any colour’ type which shows that blue and red are, roughly, equally salient. This is important because we 
wanted to preclude an additional source of salience; e.g. a situation in which at the very outset players of 
one colour (i.e. the one with higher salience) are seen as more likely to play aggressively as those of the 
other (i.e. the less salient) colour. 
5 The opposite of course would be true if, at the outset, the frequency of ‘h’ among the ‘reds’ were to fall below 
both 1/3 and that of the ‘blues’.  
6  “The intuition is that a stable mixture of hawks and doves will evolve in a single population, but with two 
interacting populations, one will become all hawks and the other all doves.” Friedman (1996), p.7. 
7 It is worth remarking that there are other possible explanations for the emergence of such a convention. 
For instance, it might be explained by a version of Variable Frame Theory (see Bacharach and Bernasconi, 
1997). 
8 Of course the darker side of Rabin’s (1993) fairness model is that Cressida may also value outcome (h,h) 
if she thinks that Troilus played ‘h’ not because he anticipated ‘d’ from Cressida, but because he expects 
her to play ‘h’ and thus wants to hurt her. Then Cressida may derive more utility from (h,h) than from 
(d,h)! In equilibrium, (h,h) is sustained by the mutual pleasure of hurting each other. 
9 Appendix F outlines Rabin’s (1993) definition of each player’s different entitlements when she/he 
chooses ‘h’, ‘d’ or ‘c’.  
10 A minimum payment of A$10 was guaranteed. However this floor was binding in only 4 out of 640 
cases. 
11 As is conventional in the literature, anonymity coupled with random matching and the knowledge that 
one would never play against the same player twice prevents the game from becoming a repeated game 
and, instead, renders it evolutionary (in the sense that players on the one hand cannot deploy trigger 
strategies - which require that the same players play repeatedly against one another and strive to build a 
reputation on eponymity - while, on the other hand, they condition their behaviour to the group’s aggregate 
trends). In fact the software used a simple algorithm to match players (which of course the players were 
unaware of). To ensure that in the ‘colour’ sessions all red players would be matched against a blue player 
an equal number of times (and vice versa), and that the matching protocol would be as close to random 
(which is what subjects were ‘promised’ it would be) as possible, the algorithm produced per player an 
equal number of pairings with a player of the same colour as of the opposite one. In aggregate, the 
algorithm guaranteed that in the 32 rounds of each game (HD and HDC) the distribution of blue-blue, red-
red and blue-red pairs would be ¼, ¼ and ½ respectively. 
12 The familiarisation rounds involved the first game of the session (that is, HD in treatments HD-HDC or 
the HDC game in treatments HDC-HD). Afterwards the computer checked, via two multiple choice 
questions, whether the players understood the way in which their payoffs would be decided. The session 
did not begin unless all subjects passed this mini-test. 
13 In a separate set of experiments with a battle-of-the-sexes type of game, we have found that whether a 
player chooses among the columns or the rows can evolve into a powerful discriminant. For instance we 
discovered that in the standard 2X2 version of that game, there was a strong tendency towards the 
Evolutionary/Nash equilibrium which favours the row players. See Varoufakis (1996). 
14 There are two ways for soliciting expectations about discrete events. One is to ask agents (as we did here) 
to predict which of the two (three) strategies his/her opponent would choose in HD (HDC). The second 
way is to invite them to tell us the odds, as they see them. The latter has the advantage of revealing more 
about the agents’ subjective p.d.f. However it suffers from two disadvantages. One is the (usually mistaken) 
presumption that subjects are familiar with distributions (and that they can express accurately their beliefs 
in probabilistic terms). The second disadvantage is that, unlike the former technique, it makes it hard to 
devise a simple reward scheme which will motivate subjects to reveal their expected distribution 



 23 

                                                                                                                                            
accurately. In selecting the former we decided to opt for the simplest question (i.e. which strategy, ‘h’, ‘d’, 
or ‘c’ do you think is more likely that your opponent will choose?), the simplest payoff-structure (i.e. if 
your guess is correct you will increase your chance of winning a prize) and the simplest (to interpret) reply. 
Since the sample size was large, and the objective was to monitor the trend of changes in such predictions 
(as opposed to their mean and standard deviation), the advantages of discrete predictions were deemed 
considerable. 
15 The lottery scheme was calibrated in such a way that if one predicted correctly all 64 choices by one’s 
opponents, one would gain a 100% chance of winning A$10 in addition to the payoffs from the games. 
16 The predictions below are derived from Rabin’s (1993) model as explained in Appendix F. In brief, if v 
denotes the marginal importance of money relative to the psychological pay-offs, it transpires that the 
influence of the psychological pay-offs is a diminishing function of v. For v values below certain 
thresholds, the diagonal elements of the payoff matrices become equilibria while the original Nash 
equilibria (h,d) and (d,h) drop out. Predictions (a) to (e) are based on the implicit hypothesis (consistent 
with Rabin) that there exists a random (exogenous) distribution of the v’s amongst our subjects. Naturally, 
as there are multiple equilibria and no theory of equilibrium selection, these predictions are based on the 
presumption that the likelihood of each equilibrium is proportional to the range of v values which supports 
it. 
17 Due to the games’ symmetry and the fact that all players were choosing among the rows, outcomes off 
the diagonal are reported as one: e.g. (h,d) data reports on the frequency of both (h,d) and (d,h) etc. 
18 The statistical tests used here need to be qualified. Although common in the experimental literature, they 
are open to the criticism that they treat as independent what might, after all, be repetitions of a single (or a 
few) observation(s). (Nb. this would be indeed true if players converge quickly to a fixed response.] 
Nonetheless, such criticism is pertinent when the reported statistical significance is marginal. In cases, like 
ours, where the differences between treatments are large, there is no cause for concern. 
19 In fact the frequency of (h,d) in game HDC of HD-HDC-Clr is four times greater than the second 
highest frequency of the remaining treatments. The null hypothesis that the frequency of this pure strategy 
Nash equilibrium is the same across treatments HD-HDC-NClr, HDC-HD-NClr and HDC-HD-Clr 
cannot be rejected at the 5% level in either game HD or HDC. By contrast, the null that the frequency of 
outcome (h,d) in treatment HD-HDC-Clr is the same with that in the other three treatments is rejected for 
HD at the 5% level and for HDC at the 1% level. 
20 Note that the observations from the No-Colour treatments are fully consistent with those reported 
elsewhere viz. one dimensional HD play (see, for instance, McDaniel, Rustrom and Williams, 1994). 
21 Perhaps the availability of strategy ‘c’ does not derail the evolution of discrimination but, instead, slows 
it down. Indeed it is possible to show in the context of an evolutionary analysis of HDC that there exist 
trajectories which, initially, take the evolutionary process away from the equilibrium (e.g. by boosting the 
frequency of co-operative play) before returning to it. 
22 Note that this test of our Discrimination Hypothesis is considerably biased in favour of the null 
hypothesis: The data used contains not only the early rounds (during which a fledgling convention had had 
no time to emerge) but also the same-colour meetings in which the Discrimination Hypothesis does not 
predict differences in ‘h’-play between the red and the blue players. And yet despite of all this ‘noise’ 
which ought to have made it harder to reject the null, in treatment HD-HDC-Clr (see Table 6) the null was 
rejected handsomely.  
23 p-values: The reported p-values refer to the empirical probability that the value of the relevant test 
statistic is as extreme or more extreme than its observed value assuming the null hypothesis to be true. E.g. 
the p-value of 0.002 reported for the Sequence Hypothesis means that the null of order-independence in 
the colour sessions can be rejected with 99.8% confidence. 
Test statistics: Two pooled t-test statistics were used in connection to the Discrimination hypothesis. One 
tested whether the frequencies with which the blue and the red players chose strategy ‘h’ in each session of 
the HD-HDC-Clr treatment were equal; see the p-value marked with (*). The other compared the 
frequencies of ‘h’ in HD-HDC-Clr with that in HD-HDC-NClr; the relevant p-value is marked with (**). 
The p-value viz. the Sequence Hypothesis is based on a simple two sample pooled t-test. 
24 Largely because of the availability of ‘c’ from the outset. 
25 The hypothesis that D-players are more co-operative than A-players is even supported by the aggregate, 
noisy data (i.e. data from all 32 rounds of HDC). The table below demonstrates this: 
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Null Hypotheses p-values; sample sizes in brackets 

Fr(c|[A,A]) = (<) Fr(c|[D,D]) 0.04♦(4928) 
Fr(c|[D,D])  → a and Fr(c|[A,A]) → b 

where a=(>)0 and b=(>)0 
0.000♦♦(4928) 

 
where Fr(c|[A,A]) is the frequency with which strategy ‘c’ was chosen in meetings between two A-players 
etc. The p-values are underpinned by a similar pooled t-statistic which tests the null that the frequency of 
strategy c is the same in A-player meetings compared to D-player meetings (the relevant p-value is marked 
by♦) and that the frequency of successful co-operation among D-players or among A-players vanishes (the 
relevant p-value is marked by♦♦). [Note that a Wilcoxon non-parametric test, not reported here, gave 
similar results.] 
26  Notice that such inertia is irrational. Instrumentally rational players (i.e. those capable of maximising 
their own payoffs given their information) would follow an emerging convention only in cross-colour 
matches. Why? Because in the absence of any guarantees of consistently aligned beliefs, the discriminatory 
convention offers them useful information about their opponent’s likely beliefs and actions. However in 
same-colour matches they are useless. Therefore only by mistake will pay-off maximisers allow habits 
which took shape in cross-colour meetings to spread into same-colour ones. Such inertia, or reinforcement, 
presumes that players pay no attention to the outcomes of strategies that they did not choose. For an 
interesting discussion see Erev and Roth (1998) and Erev, Bereby-Meyer and Roth (1999). 
27 It is not unusual for players belonging to different groups to entertain different perceptions of fairness. 
For instance, commenting on the data from their dispute-resolution experiment, Babcock, Lowenstein and 
Issachoroff (1995) conclude thus: “Even when the parties have the same information they will come to 
different conclusions about what a fair settlement would be and base their predictions of judicial behaviour 
on their own views of what is fair.” Asdigan, Cohn and Blum (1994) report the well known fact that men 
and women rationalise by means of different principles of distributive justice their different socio-economic 
status as well as that of others. See also Kahn, O’Leary, Krulewitz and Lamm (1980), Major and Adams 
(1983), and Major, Bylsma and Cozzarelli (1989). Schotter, Weiss and Zapater (1996) suggest, in effect, 
that such ideas of fairness may be endogenously generated. In an ultimatum game experiment involving 8 
pairs of players, the 4 proposers who gained most money (out of the 8 proposers in each session) were 
given the opportunity to play again (against another responder). In these sessions the responders (who knew 
that the proposers were competing against each other) accepted, on average, lower offers than in sessions 
where the proposers did not compete. Thus it seems that players are prepared to accept a lesser position if 
there is some rationale for it. Likewise Binmore and Samuelson (1993) report that, in the context of 
ultimatum games, the normative expectations of responders and proposers change at different speeds due to 
the fact that the former have less to lose from rejecting unfair offers by the latter. 
28  Our data on subjects’ point estimates of their opponent’s choice, though not presented here due to space 
restrictions, shows unequivocally that, as convergence to the discriminatory convention was approaching, 
our players predicted the observed behavioural patterns rather accurately. E.g. D-players (A-players) 
increasingly predicted a higher (lower) frequency of h if their opponent was of the opposite colour. D-
players anticipated a higher (lower) degree of co-operativeness from opponents of the same colour than A-
players. 
29 A most astounding case of the 1→2→1 path in the diagram of the Dance of the Meta-axioms (see 
Chapter 1). 


